ar X iv : 0 90 1 . 35 09 v 1 [ m at h . C O ] 2 2 Ja n 20 09 Catalan numbers and relations ∗

نویسندگان

  • Filippo Disanto
  • Luca Ferrari
  • Renzo Pinzani
  • Simone Rinaldi
چکیده

We define the notion of a Catalan pair (which is a pair of binary relations (S,R) satisfying certain axioms) with the aim of giving a common language to most of the combinatorial interpretations of Catalan numbers. We show, in particular, that the second component R uniquely determines the pair, and we give a characterization of R in terms of forbidden configurations. We also propose some generalizations of Catalan pairs arising from some slight modifications of (some of the) axioms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 1 . 42 99 v 1 [ m at h . C O ] 2 7 Ja n 20 09 TRIANGLE - FREE TRIANGULATIONS

The flip operation on colored inner-triangle-free triangulations of a convex polygon is studied. It is shown that the affine Weyl group e Cn acts transitively on these triangulations by colored flips, and that the resulting colored flip graph is closely related to a lower interval in the weak order on e Cn. Lattice properties of this order are then applied to compute the diameter.

متن کامل

ar X iv : 0 90 1 . 38 34 v 1 [ m at h . N T ] 2 4 Ja n 20 09 On the Inverse Problem Relative to Dynamics of the w Function

In this paper we shall study the inverse problem relative to dynamics of the w function which is a special arithmetic function and shall get some results.

متن کامل

ar X iv : 0 90 1 . 46 64 v 1 [ cs . L O ] 2 9 Ja n 20 09 Square root meadows ∗

Let Q0 denote the rational numbers expanded to a meadow by totalizing inversion such that 0 = 0. Q0 can be expanded by a total sign function s that extracts the sign of a rational number. In this paper we discuss an extension Q0(s, √ ) of the signed rationals in which every number has a unique square root.

متن کامل

ar X iv : 0 90 1 . 18 06 v 1 [ m at h . A G ] 1 3 Ja n 20 09 GREENBERG APPROXIMATION AND THE GEOMETRY OF ARC SPACES

We study the differential properties of generalized arc schemes and geometric versions of Kolchin’s Irreducibility Theorem over arbitrary base fields. As an intermediate step, we prove an approximation result for arcs by algebraic curves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009